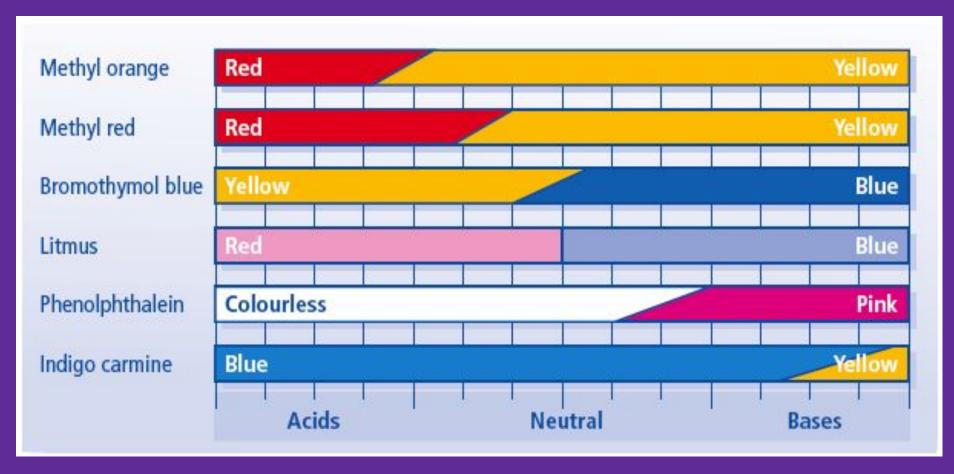

Chemical Processes 6: Acids and Bases

First 3:35 min

Key Terms

- Acids
- Bases
- Bromothymol blue
- Concentration
- Indigo carmine
- Litmus paper
- Methyl orange
- pH indicators
- phenolphthalein

pH indicators


- pH indicators are colour changing chemicals based on the pH of the solution they are placed into.
- On the next slide
- A ph scale is numbered 0-14 and is used to measure how acidic or basic a solution is.
- Acids: pH less that 7
- Neutral: pH 7
- Bases: pH more than 7

pH = [H+] in a solution Acids have $10^{-1} \rightarrow 10^{-6.9}$

(high [H+])

an 7 Neutral have 10^{-7} \rightarrow 10 (flight[111])

Bases have $10^{-7.1} \rightarrow 10^{-14}$ (low [H+])

Assignment: H/O p 85

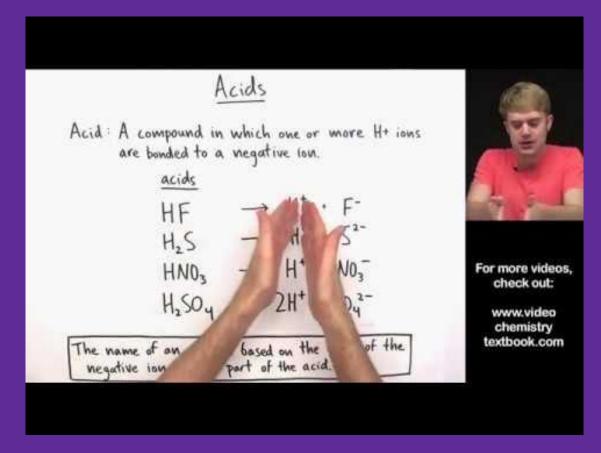
Production of Ions

- Acids dissolved in water release H⁺ ions
- Bases dissolved in water release OH⁻ ions
- These ions can conduct an electric charge
- pH concentration refers to the concentration of Hydrogen ions
 - High [pH] of H+ ions = acidic solution (low pH)
 - Recall Ex of an acid with pH of 3: 1 x 10⁻³ [H⁺]
- H+ and OH- react readily to make water
- An acidic solution and a basic solution can neutralize one another → neutral solution

Properties of Acids and Bases

Assignment: Handout p 87

Table 5.6 Properties of Acids and Bases		
property	Acid	Base
Taste CAUTION: Never taste chemicals in the laboratory.	Acids taste sour. Lemons, limes, and vinegar are common examples.	Bases taste bitter. The quinine in tonic water is one example.
Touch CAUTION: Never touch chemicals in the laboratory with your bare skin.	Many acids will burn your skin. Sulfuric acid (battery acid) is one example.	 Bases feel slippery. Many bases will burn your skin. Sodium hydroxide (lye) is one example.
Indicator tests	Acids turn blue litmus paper red.	Bases turn red litmus blue.
	Phenolphthalein is colourless in an acidic solution.	Phenolphthalein is colourless in slightly basic solutions and pink in moderate to strongly basic solutions.
Reaction with some Metals, such as Magnesium or zinc	Acids corrode metals.	No reaction
lectrical conductivity	Conductive	Conductive
H	• Less than 7	More than 7
Production of ions	 Acids form hydrogen (H⁺) ions when dissolved in solution. 	Bases form hydroxide (OH ⁻) ions when dissolved in solution.


Acids:

- Can be identified by their chemical formula
 - Examples: HCI (hydrochloric acid)
 - HNO₃ nitric acid
- Special cases: when an acid contains carbon, the H is written on the right side.
 - Example: CH₃COOH

Naming Acids Notes

- Acids in an aqueous state end in "ic" acid
 Ex: HCl Hydrogen chloride becomes Hydrochloric acid
 H₂SO₄ Hydrogen sulphate becomes sulphuric acid
- Oxygen containing acids with hydrogen, and ending with "ate"-drop hydrogen and end with "ic"
 Ex: H₂CO₃ hydrogen carbonate = H₂CO₃ (aq) carbonic acid
- If the name begins with hydrogen and ends with the suffix "ite" change ending to "ous" acid
 - Ex: H₂SO₃ hydrogen sulphite = H₂SO₃ (aq) sulphurous acid

Naming Acids

Naming Bases

- Contain OH (hydroxide), is found on the right of the formula
- Some are safe enough to ingest
 - Mg(OH)₂ an antacid is used to neutralize stomach acid
- Some bases are extremely dangerous and reactive with human skin and tissue, these are referred to as <u>caustic</u>.
 - Examples: drain cleaner and oven cleaner.

Assignment: Handout p86/91

Important Exceptions

ACIDS	IONS	ACID NAME
H ₃ PO ₄	phosphate (PO ₄ ³⁻)	phosphoric acid
H ₃ PO ₃	phosphite (PO ₃ ³ -)	phosphorous acid
H ₂ SO ₄	sulfate (SO ₄ ²⁻)	sulfuric acid
H ₂ SO ₃	sulfite (SO ₃ ² -)	sulfurous acid
CH ₃ COOH	acetate (CH ₃ COO)	Acetic acid

- Cabbage lab