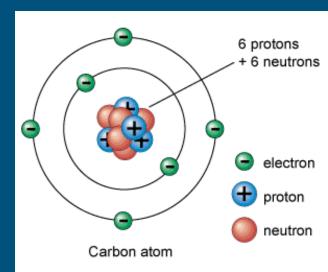
Atomic Theory and Bonding

Application of Grade 10 Chemistry BC SCI 10 Textbook Chapter 4.1 p168-183

Key terms (handout)

- atomic number
- Bohr diagram
- compound
- covalent compound
- covalent bond
- ionic compound
- ionic bond
- ions
- metals
- nonmetals
- chemical equation

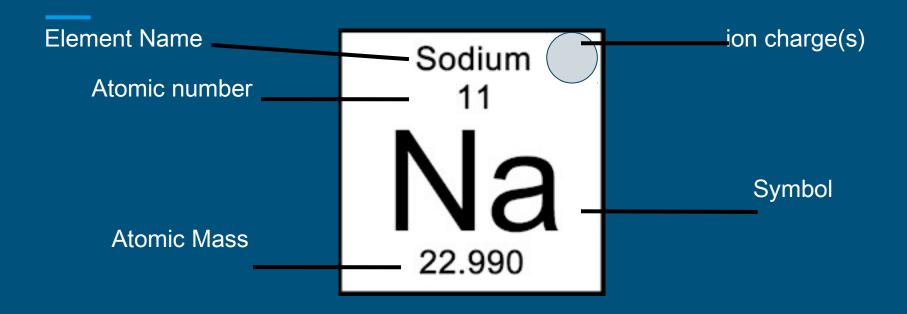

- metalloids
- Lewis diagram
- molecule
- valence electron
- group/family
- chemical period
- chemical reaction
- law of conservation of
- reactant
- product

- synthesis reaction
- decomposition reaction
- single replacement reaction
- double replacement reaction
- combustion reaction
- acid
- base
- acid base indicator
- ph scale
- neutralization reaction
- endothermic reaction
- exothermic reactions

What are atoms?

Atom- the smallest particle of any element that retains the properties of the element.

made up of subatomic particles: protons, neutrons and electrons.



Complete the following table:

<u>Name</u>	<u>Symbol</u>	Electric Charge	Location in the Atom	Relative Mass
Proton				
Neutron				
Electron				

Answer Key

<u>Name</u>	<u>Symbol</u>	Electric Charge	Location in the Atom	Relative Mass
Proton	р	1+	nucleus	1
Neutron	n	0	nucleus	1.0001
Electron	е	1-	Surrounding the nucleus	0.0001

- Assignment: the atom and the subatomic particles handout

Assignments:

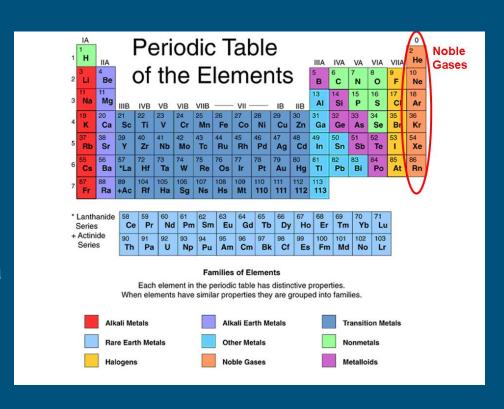
- Build a model of two atoms (from the first 20 elements)

[in pairs]

- Choose 2 cards per group
- Create the models
- Walk and talk

Label your periodic table with the following:

- group/family
- chemical period
- metals
- nonmetals
- metalloids



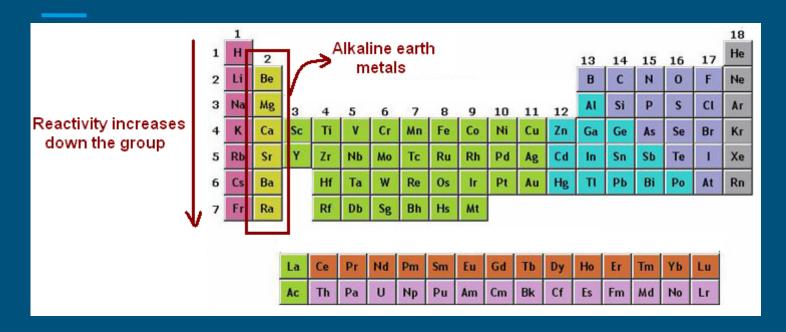
Family characteristics (use different colours to show the different famillies)


Noble Gases:

 Not reactive because they have a full outer electron shell

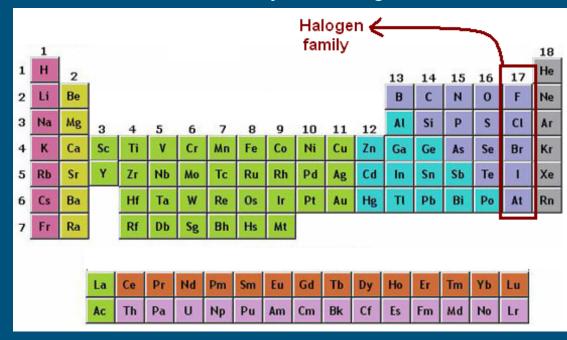
Outer electron shell is known as a valence shell

Alkali Metals



 Most reactive metal because outer electron shell only contains one electron

DO NOT TRY THIS AT HOME!!!


Alkaline Earth Metals

Reactive, has two electrons in outer electron shell

Halogens

- Most reactive group of non-metals
- Have one empty space in outer electron shell, so they want to gain one.

Special case: Hydrogen

- Can act like a metal or non-metal
- Can lose or gain an electron (unique, as it is the only atom that can do this)

Other special cases

Special 7: N. O. F. Cl, Br, I, H

- Alway occur in pairs: $\overline{N_2}$, $\overline{O_2}$, $\overline{F_2}$, $\overline{Cl_2}$, $\overline{Br_2}$, $\overline{l_2}$, $\overline{H_2}$

Phosphorus:

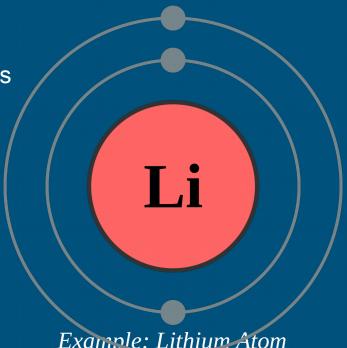
- Occurs alone in groups of 4: P₄

Sulfur

Occurs in groups of 8 when alone: S₈

Isotopes

- Are variations of the same element
- They have the same number of protons but vary in their number of neutrons


- → Example: Carbon- 12 vs. Carbon- 11
 - ◆ Carbon- 12 has 6 protons and 6 neutrons, while
 - Carbon-11 has 6 protons and 5 neutrons

- Assignment: The atom and subatomic particles handout

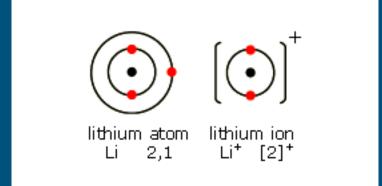
Bohr Diagrams

Used to show electron arrangement in the shells

- 1st shell- can hold 2 electrons
- 2nd shell can hold 8 electrons
- 3rd shell can hold 8 electrons
- 4th shell- can hold 16 electrons

Example: Lithium Atom

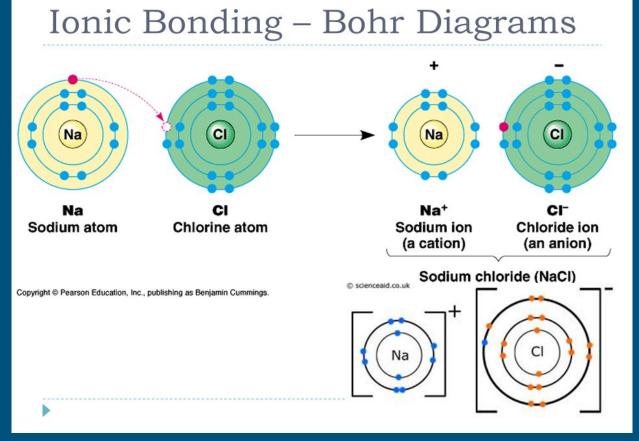
- Desk activity [chalk/white boards]- quick practice
- Bohr diagram activity


Full valence shell

- Called a stable octet
- Unreactive
- Metals may lose electrons to gain a full outer shell (become cations)
- Non-metals may gain electrons to gain a full outer shell (become anions)

Difference between Atom and Ion

- lons have a charge, which means they differ in number of protons and electrons
- A lithium ion has a charge of plus one, which means that it has one more proton than electron
- If in an atom of lithium there are three electrons, in an ion there would be two electrons

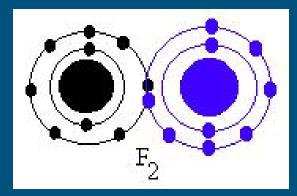

[Desk/white board] activity for more practice

Ionic Bonding

- Occurs between a metal and a non-metal
- Involves the transfer of Electrons
- Example: NaCl

- Tennis ball/'bucket' activity to model ionic bonding
- practice drawing ionic bonding activity

Covalent Bonding

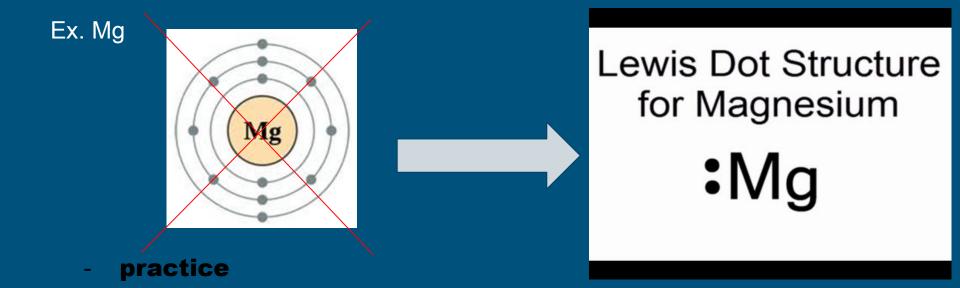

- Occurs between 2 non-metals
- Electrons are shared, not transferred

CHEN	vf 10	1						F	Periodi	c Tabl	е						B. HAR	KNESS
1 IA																		18 VIIIA
1 H 1.00		IIA											13 IIIA	14 IVA	15 VA	16 VIA	VIIA	2 He 4.00
3 Li 6.9		4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.9	1	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 GL 35.45	18 At 39.95
19 K 39.1		20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn. 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 76.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.4	<u>.</u>	38 St 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Ic (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sa 118.71	51 Sb 121.75	52 Te 127.60	53 126.90	54 Xe 131.29
55 Cs 132.5	,	56 Ba 137.33	57 La 138.9	72 H£ 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Lt 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 JJ 204.4	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Ro. (222)
87		RR	80	104	105	106	107	108	109									

Example F₂

**** Diatomic Molecules (special 7)- will always occur in pairs.

Chalk/white boards and talk activity



Assignment:

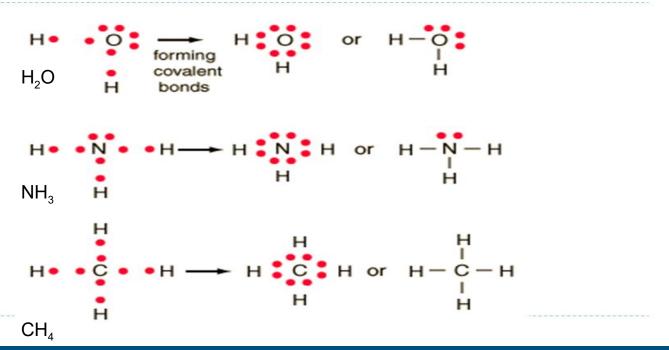
- The Atom and subatomic particles handout, Bohr models

Lewis Diagram

- Only show valence electrons

Lewis Diagrams for Ionic Compounds

Ex. MgCl₂



practice

$$:C1: Mg^{2+} :C1:$$

Lewis diagram for a covalent compound

Lewis Dot Diagrams – Covalent Bonds

Assignment:

- Lewis Diagrams handout